BACKGROUND

While patients with cancer are known to be at increased risk of infection in part due to the immunosuppressing nature of cancer treatments, recent data indicate a particularly high risk for COVID-19 infection and poor outcomes.

Vitamin D may play an important role in COVID-19. A recent study demonstrated vitamin D deficiency may increase risk of COVID-19 infection, and a small randomized controlled trial in Spain reported significant improvement in mortality among hospitalized patients treated with calcifediol.1

METHODS

In this study, we performed a retrospective cohort analysis on patients with breast (female) or prostate (male) cancer or other cancers with reported vitamin D deficiency. Patients with an ICD-10 code for vitamin D deficiency or a Charlson-Deyo Index of ≥1 were included in the study. 12,390 patients who receive closer screening and follow up are more likely to be tested for and found to have COVID-19 infection if vitamin D deficient.

The breast cancer cohort consisted of 85% Whites, 13% Blacks, 6.6% Asians, 3.5% Hispanics, 1.9% Native Hawaiian or Other Pacific Islander, 0.1% American Indian or Alaska Native, and 0.1% other race/ethnicity. The prostate cancer cohort consisted of 83.1% Whites, 12.3% Blacks, 0.1% Asian, 0.1% Native Hawaiian or Other Pacific Islander, 0.1% American Indian or Alaska Native, and 0.1% other race/ethnicity. Our study suggests potentially vulnerable populations, such as breast and prostate cancer patients, may have an elevated risk of COVID-19 infection if vitamin D deficient.

CONTACT

Aaron Galaznik
agalaznik@mdsol.com

CONCLUSIONS

Our study suggests potentially vulnerable populations, such as breast and prostate cancer patients, may have an elevated risk of COVID-19 infection if vitamin D deficient.

Our study demonstrates the role of vitamin D as a prophylaxis or treatment for COVID-19.

Other cancer populations with reported vitamin D deficiency should be studied to evaluate their potential elevated risk for COVID-19 infection.

Vitamin D might play a role in other viral infections and would be important to assess given the increased vulnerability of cancer populations to secondary infection.

MEXICAN AMERICAN HEALTH RESEARCH DATABASE

2. Aaron Galaznik, MD MBA, Emely Rusli, MPH, Vicki Wing, MS, Rahul Jain, PhD, Sheila Diamond, MS, CGC, and David Ferguson, MD MBA MSc FCPP

4. A total of 16,287 breast cancer and 14,919 prostate cancer patients were included in the study (Figure 2).

5. Table 1: Patient Demographic and Clinical Characteristics

6. Figure 3: Odds Ratio Estimates: Vitamin D Deficiency and COVID-19 Infection

7. Future Directions for Research

Our study suggests potentially vulnerable populations, such as breast and prostate cancer patients, may have an elevated risk of COVID-19 infection if vitamin D deficient. Conclusions

- Unadjusted and adjusted modeling results establish that COVID-19 infection is higher among vitamin D deficient patients compared to non deficient patients, and that this association is independent of age, sex, race and ethnicity, and previous COVID-19 infection.5
- In a subgroup of patients with incident breast cancer (n=5,584), a significant association was found (adjusted OR=2.76 [95% CI: 1.53, 4.97]). In a subgroup of patients with incident prostate cancer (n=5,973), vitamin D deficiency was significantly associated with COVID-19 infection (p<0.05) (Figure 3).
- These results support previous findings demonstrating a relationship between vitamin D deficiency and COVID-19 infection in both cohorts, with statistical significance in both disease settings.
- The breast cancer cohort consisted of 85% Whites, 13% Blacks, 6.6% Asians, 3.5% Hispanics, 1.9% Native Hawaiian or Other Pacific Islander, 0.1% American Indian or Alaska Native, and 0.1% other race/ethnicity. The prostate cancer cohort consisted of 83.1% Whites, 12.3% Blacks, 0.1% Asian, 0.1% Native Hawaiian or Other Pacific Islander, 0.1% American Indian or Alaska Native, and 0.1% other race/ethnicity. Our study suggests potentially vulnerable populations, such as breast and prostate cancer patients, may have an elevated risk of COVID-19 infection if vitamin D deficient.

A total of 16,287 breast cancer and 14,919 prostate cancer patients were included in the study (Figure 2).

Table 1: Patient Demographic and Clinical Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Breast Cancer</th>
<th>Breast Cancer P<0.05 (%)</th>
<th>Breast Cancer %</th>
<th>Prostate Cancer</th>
<th>Prostate Cancer P<0.05 (%)</th>
<th>Prostate Cancer %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (Mean, SD)</td>
<td>68.9±11.2</td>
<td>68.9±11.2</td>
<td>0.1%</td>
<td>73.6±10.0</td>
<td>73.6±10.0</td>
<td>0.1%</td>
</tr>
<tr>
<td>Sex (n, %)</td>
<td>7,982/48.0%</td>
<td>7,982/48.0%</td>
<td></td>
<td>12,390/64.9%</td>
<td>12,390/64.9%</td>
<td></td>
</tr>
<tr>
<td>Race (n, %)</td>
<td>White 85.0%</td>
<td>85.0%</td>
<td></td>
<td>Black 9.6%</td>
<td>9.6%</td>
<td></td>
</tr>
<tr>
<td>Diabetes (n, %)</td>
<td>33.0%</td>
<td>33.0%</td>
<td></td>
<td>4.8%</td>
<td>4.8%</td>
<td></td>
</tr>
<tr>
<td>COVID-19 (n, %)</td>
<td>83.6%</td>
<td>83.6%</td>
<td></td>
<td>2.3%</td>
<td>2.3%</td>
<td></td>
</tr>
<tr>
<td>Median Quan's Charlson Comorbidity Index</td>
<td>49</td>
<td>49</td>
<td>0.1%</td>
<td>83</td>
<td>83</td>
<td>0.1%</td>
</tr>
</tbody>
</table>

Table 2: Odds Ratio Estimates: Vitamin D Deficiency and COVID-19 Infection

<table>
<thead>
<tr>
<th>Odds Ratio (95% CI)</th>
<th>Breast Cancer</th>
<th>Breast Cancer P<0.05 (%)</th>
<th>Breast Cancer %</th>
<th>Prostate Cancer</th>
<th>Prostate Cancer P<0.05 (%)</th>
<th>Prostate Cancer %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin D deficiency</td>
<td>2.384</td>
<td>14.6%</td>
<td>1,730</td>
<td>1,730</td>
<td>1,730</td>
<td>1,730</td>
</tr>
</tbody>
</table>

Figure 1. Study Timeline

Figure 2. Patient Attrition

Figure 3. Odds Ratio Estimates: Vitamin D Deficiency and COVID-19 Infection

METHODS

In this study, we performed a retrospective cohort analysis on patients with breast (female) or prostate (male) cancer or other cancers with reported vitamin D deficiency. Patients with an ICD-10 code for vitamin D deficiency or a Charlson-Deyo Index of ≥1 were included in the study. 12,390 patients who receive closer screening and follow up are more likely to be tested for and found to have COVID-19 infection if vitamin D deficient.

The breast cancer cohort consisted of 85% Whites, 13% Blacks, 6.6% Asians, 3.5% Hispanics, 1.9% Native Hawaiian or Other Pacific Islander, 0.1% American Indian or Alaska Native, and 0.1% other race/ethnicity. The prostate cancer cohort consisted of 83.1% Whites, 12.3% Blacks, 0.1% Asian, 0.1% Native Hawaiian or Other Pacific Islander, 0.1% American Indian or Alaska Native, and 0.1% other race/ethnicity. Our study suggests potentially vulnerable populations, such as breast and prostate cancer patients, may have an elevated risk of COVID-19 infection if vitamin D deficient.

CONCLUSIONS

Our study suggests potentially vulnerable populations, such as breast and prostate cancer patients, may have an elevated risk of COVID-19 infection if vitamin D deficient.

Our study demonstrates the role of vitamin D as a prophylaxis or treatment for COVID-19.

Other cancer populations with reported vitamin D deficiency should be studied to evaluate their potential elevated risk for COVID-19 infection.

Vitamin D might play a role in other viral infections and would be important to assess given the increased vulnerability of cancer populations to secondary infection.