CA3 levels in plasma associate strongly with site of onset in Amyotrophic Lateral Sclerosis (ALS)

Sushila A. Shenoy, PhD1; Sheila S. Diamond, MS, CGC2; Philip L Beineke1; Patricia J. Allen, MS1; Melissa Amorim1; Erin Fleming1; Valerie Estess2; James D. Berry, MD, MPH2; Dario Gelevski3; Sally K. Nelson, MS, PhD4; Jinsky A. Andrews, MD, MSc5; Neil A. Shneider, MD, PhD; David Fajgenbaum, MD, MBA, MSc6

Medidata, a Dassault Systèmes company, New York, NY, 10014 | Project ALS, New York, NY 10032 | Massachusetts General Hospital Sean M. Healey and AMG Center for ALS, Boston, MA 02114 | Physiologically at Somalogic, Inc., Boulder, CO 80301 | Columbia University Department of Neurology, New York, NY 10032 | Castleman Disease Collaborative Network and the University of Rochester, Rochester, NY 14623

BACKGROUND

• Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron disease with variable onset and unclear pathological mechanisms. Biological and clinical heterogeneity contribute to its long median time-to-diagnosis of 11.5 months, impacting patient care, clinical trial eligibility, and outcomes. Several factors influence time-to-diagnosis, including site of onset (limb, bulbar, others).

• With limb-onset associated with longer time-to-diagnosis compared to bulbar-onset and bulbar onset reported to have a faster rate of progression than limb-onset, there is a clinical need to explore diagnostic and prognostic biomarkers that are specific to site of onset.

• Proteomics methods are being increasingly applied to investigate biomarkers of interest to understand disease mechanisms. In neuromuscular diseases, like ALS, the skeletal muscle specific enzyme, carbonic anhydrase III (CA3), has been reported to be highly expressed.

• In this analysis, we explore biomarker associations by incorporating proteomic signatures with clinical variables and findings suggest that a combination of clinical and -omic factors may be more informative diagnostic criteria than either stand-alone. Elevated plasma CA3 levels appear to be a common finding across various neuromuscular disorders related to ALS, but especially in Kennedy’s disease with highly elevated levels.

• These findings illustrate, first, that a greater understanding of -omics-based diagnostics focusing on the limb-onset subtype may better inform ALS diagnosis, and that plasma CA3 analysis may be a useful addition to the diagnostic armamentarium for limb-onset ALS.

• In addition to limb- vs. bulbar-onset, CA3 exhibits varying degrees of elevation in different neuromuscular disorders that merit further investigation.

• These results highlight the clinical utility of using proteomics to assist patients, families, and clinicians in planning for care, in addition to helping to inform eligibility requirements for those interested in enrolling in clinical trials.

HYPOTHESIS

We hypothesize that blood plasma proteomic signatures of early and suspected ALS patients may include biomarkers which can better inform the diagnosis of ALS.

METHODS

• Quantification of 533 plasma analytes was performed using the Somalogic platform on archived EDTA plasma samples taken from ALS patients and appropriate controls from a subset of the ongoing studies at Massachusetts General Hospital. The samples were collected at the Neuromuscular Clinical Trials Unit (MCTU) between 2003 and 2007.

• Patients were enrolled in any one of the drug efficacy studies undertaken by MCTU and plasma samples were obtained at baseline (before treatment) for the purposes of biomarker discovery (NHM). In total, data from 338 patients were analyzed (Table 1).

• Protein levels were log-transformed and truncated at the 99th percentile. Protein levels were log transformed and truncated at the 99th percentile. Proteins and other biomarkers were measured using the Somalogic platform.

• Among five analytes that differentiate between ALS and healthy controls, other markers were CKB (elevated), GDF11, IGFBP3, and IF2 (lowered). (Figure 2).

RESULTS

• Carbonic anhydrase 3 (CA3), a skeletal muscle-specific enzyme highly expressed in neuromuscular diseases, was the only blood plasma marker detected that differentiates among sites of onset. CA3 elevation is more pronounced in limbs and other non-bulbar onset types in comparison to bulbar onset (Figure 1).

• CA3 was elevated in patients with limb-onset ALS (N=105) relative to both healthy controls (N=90) and bulbar-onset ALS (N=56) [both adjusted p<0.001]. Elevated CA3 levels also differed in magnitude across the neuromuscular disorders, with limb-onset exhibiting similar elevation to multiple sclerosis and hereditary spastic paraplegia, but not as high as Kennedy’s disease [p<0.001] (Figure 3).

• We hypothesize that blood plasma proteomic signatures of early and suspected ALS patients may include biomarkers which can better inform the diagnosis of ALS.

Table 1. Patient Clinical Characteristics (TOTAL N=338)

<table>
<thead>
<tr>
<th>Patient Characteristics</th>
<th>Total (N=338)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early ALS</td>
<td>166</td>
</tr>
<tr>
<td>Suspected ALS</td>
<td>19</td>
</tr>
<tr>
<td>Control disease (ALS)</td>
<td>43</td>
</tr>
<tr>
<td>Control disease (AD)</td>
<td>50</td>
</tr>
</tbody>
</table>

• Among five analytes that differentiate between ALS and healthy controls, other markers were CKB (elevated), GDF11, IGFBP3, and IF2 (lowered). (Figure 2).

Figure 2. Proteomic biomarker analysis

CONCLUSIONS

• Elevated levels of CA3 in plasma is characteristic of limb-onset ALS vs. bulbar-onset ALS and healthy controls. This finding suggests that a combination of clinical and -omic factors may be more informative diagnostic criteria than either stand-alone. Elevated plasma CA3 levels appear to be a common finding across various neuromuscular disorders related to ALS, but especially in Kennedy’s disease with highly elevated levels.

• These findings illustrate, first, that a greater understanding of -omics-based diagnostics focusing on the limb-onset subtype may better inform ALS diagnosis, and that plasma CA3 analysis may be a useful addition to the diagnostic armamentarium for limb-onset ALS.

• In addition to limb- vs. bulbar-onset, CA3 exhibits varying degrees of elevation in different neuromuscular disorders that merit further investigation.

• These results highlight the clinical utility of using proteomics to assist patients, families, and clinicians in planning for care, in addition to helping to inform eligibility requirements for those interested in enrolling in clinical trials.

ACKNOWLEDGEMENTS

• Chris and Gena Combs; Jenifer Perry; Khahn Quach; M. Joan Thomas, MD; Bill Wexcher; Andy Wissner

References:

Figure 1. CA3 heterogeneity by ALS site of onset

Figure 2. Proteomic biomarker analysis

Figure 3. Heterogeneity of CA3 elevation among related diseases