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Abstract
Synthetic clinical trial data are increasingly being
seen as a viable option for research applications
when primary data are unavailable. A challenge
when applying generative modeling approaches
for this purpose is many clinical trial datasets
have small sample sizes. In this paper, we present
an interpretable data augmentation framework for
improving generative models used to produce syn-
thetic clinical trial data. We apply this framework
to three clinical trial datasets spanning different
disease indications and evaluate the impact of
factors such as initial dataset size, generative al-
gorithm, and augmentation scale on metrics used
to assess synthetic clinical trial data quality, in-
cluding fidelity, utility, and privacy. The results
indicate that this framework can considerably im-
prove the quality of synthetic data produced using
generative algorithms when considering factors
of high interest to end users of synthetic clinical
trial data.

1. Introduction
Synthetic clinical trial data provides an innovative solu-
tion for sharing clinical trial data(Z. Azizi & Collabora-
tors, 2021)(H.-H. Wong & Eyraud, 2014), where patient
privacy(Kulynych, 2008) and trial sponsor proprietary in-
formation concerns (Shafquat et al.) are major deterrents
to sharing primary data. Given these constraints are the
norm for clinical trial data, there is an increasing demand
for synthetic data for research applications including design-
ing more efficient clinical trials through revising dosage,
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anticipating adverse events, and other strategies that can
result in higher probabilities of a successful trial (Z. Az-
izi & Collaborators, 2021)(H.-H. Wong & Eyraud, 2014).
To generate synthetic data for related clinical data sources
such as Electronic Health Records (EHR), Generative Ad-
versarial Networks (GAN) and Tabular Variational Autoen-
coders (TVAE)(Xu et al., 2019) have been successfully ap-
plied (Ghadeer Ghosheh & Zhu, 2022)(Muhammad Sakib
Khan Inan & Uddin, 2023)(Giannis Nikolentzos & Brandt,
2023). However, most generative models used to generate
synthetic clinical data have been evaluated and benchmarked
on datasets where the training dataset size is large, often
including tens to hundreds of thousands of patient records.
A challenge for applying these same approaches to clinical
trials is the datasets may only include only a few hundreds
to thousands of patients depending on the disease indication
and phase of the clinical trial(NIH, 2023). A consequence
is the quality of generative modeling synthetic clinical trial
data can be insufficient when considering data metrics of
interest to consumers of these data, including data fidelity
(Emam et al., 2021)(Beigi et al., 2022), utility (e.g. survival
curves(Altman, 1992)(MK Goel & Kishore, 2010)), and
privacy (Beigi et al., 2022)(Shafquat et al.).

For limitations on training data in other fields, such as com-
puter vision and language models, data augmentation has
been proposed as a potential solution (Gunjan Ansari & Sax-
ena, 2021)(Steven Y. Feng & Hovy, 2021)(Tomoki Ishikawa
& Urushihara, 2022)(Rasool Fakoor, 2020)(Hung & Gan,
2021)(Khoshgoftaar, 2019). Rudimentary techniques in
computer vision (flipping, rotation, and cropping) and natu-
ral language models (oversampling with synonym substitu-
tion) have been used to create augmented datasets, where
these approaches can improve performance for machine-
learning based prediction models (Gunjan Ansari & Saxena,
2021)(Steven Y. Feng & Hovy, 2021)(Tomoki Ishikawa
& Urushihara, 2022)(Rasool Fakoor, 2020)(Hung & Gan,
2021)(Khoshgoftaar, 2019). Similarly, augmentation-like
techniques for tabular data have been explored using meth-
ods such as oversampling at random (Engelmann & Less-
mann, 2020) and synthetic minority oversampling (SMOTE)
(Nitesh V. Chawla & Kegelmeyer, 2002) to address is-
sues of underrepresentation and bias for minority classes.
However, challenges have been encountered with these ap-
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proaches including over-training on the augmented data
(A. S. Tarawneh & Almuhaimeed, 2022) and bias when
introducing duplicates in the data (Katherine Lee & Car-
lini, 2022)(Yuki Eizuka & Suzuki, 2021). While meth-
ods for correcting these issues have been explored in-
cluding application-specific changes to the learning ar-
chitecture and data augmentation approaches, the exten-
sion of these strategies to generative modeling of clini-
cal trial data is not straightforward where methods like
SMOTE (which upsample the ”minority” classes in the
data) or oversampling may introduce privacy concerns
(A. S. Tarawneh & Almuhaimeed, 2022)(Katherine Lee
& Carlini, 2022)(Yuki Eizuka & Suzuki, 2021)(Shafquat
et al.).

In this paper, we propose an interpretable data augmentation
framework to generate high-quality synthetic clinical trial
data using generative models trained on limited data. Our
framework takes advantage of the fact that the characteristics
of the original dataset important to the end user for down-
stream data analysis, including easy to interpret metrics such
as fidelity, utility, and privacy, can be directly controlled in
the augmented dataset. The framework consists of two main
phases: (i) augmentation of the clinical trial data and (ii) gen-
eration of synthetic data using the augmented training data.
For (i), it is critical to use an algorithm that is able to gen-
erate an augmentation dataset that preserves interpretable
metrics such as fidelity, utility, and privacy where “bad aug-
mentations” can lead to significant decreases in the overall
synthetic data quality (Chi-Heng Lin & Muthukumar, 2022).
For generating augmentation datasets for clinical trial data,
we use “Simulants” (Beigi et al., 2022) a dimension reduc-
tion, re-sampling method designed to produce synthetic data
interpretably similar to the original, by preserving utility,
fidelity and privacy. We evaluate the improvement in the per-
formance of generative synthetic algorithms when trained
on Simulants augmented clinical trial datasets. Though
any generative data algorithm can be used in this frame-
work, in the current set of experiments, we evaluate this
data augmentation framework on methods that have previ-
ously been used to generate other types of clinical data with
large sample sizes (i) CTGAN, (ii) CopulaGAN, and (iii)
TVAE (Patki et al., 2016). To the best of our knowledge, a
data augmentation framework to train generative models to
generate synthetic data has not been explored to date. This
augmentation framework presents a first time exploration of
this concept.

2. Conditions for augmentation
When using a GAN or VAE to generate synthetic data, the
overall goal is to train a latent variable generator or decoder
of a distribution Q that is suitably close to P , the unknown
true distribution of the input data XN of sample size N .

The problem is when P is complex and the N of the input
data is relatively small, the generative model Q may not
be close enough to P , where the output may not be use-
ful for a given application. Of interest is deciding under
what conditions training on augmented data X′

aN from an
unknown distribution P ′ ̸= P with samples size a ∗ N ,
produced by some mechanism, will result in a better out-
come than when training on XN . Considering the generator
G(Z) of a GAN with latent variables Z as the example,
and utilizing Kullback-Leibler divergence DKL(P ||Q) to
assess the difference between distributions, the condition
when augmented data will result in an improved outcome
can be phrased as:

EG(Z)′|X′
aN∼P ′DKL(P ||Q′) < EG(Z)|XN∼PDKL(P ||Q)

(1)
where G(Z) is the generator resulting from input data XN ,
G(Z)′ is the generator of Q′ resulting from input data X′

aN ,
and the expectations are over possible data augmented data
sets sampled from P ′ and possible observed input data sam-
pled from P . For this expression, in the most extreme limit-
ing case where a → ∞ and assuming training of networks
in the GAN with arbitrary width and / or depth (Hanin &
Sellke, 2017), this produces:

DKL(P ||P ′) < EG(Z)|Xn∼PDKL(P ||Q) (2)

illustrating that in the limit, an augmented data approach
has value only if P and P ′ are suitably close. In many
applications, producing augmented data where DKL(P ||P ′)
is small enough can be challenging, where we might expect
this distance to increase with increasing a. In such cases,
as increased training occurs on the augmented samples, the
resulting output may not be useful.

An advantage when considering the objective of producing
synthetic clinical trial data is the suitability of data for the
end user often depends on quantifiable metrics such as fi-
delity, utility, and privacy. Considering a fidelity metric F
(Emam et al., 2021)(Beigi et al., 2022)(Patki et al., 2016) as
the example, where larger values indicate greater similarity
of two datasets or distributions, use of augmented data will
result in higher fidelity synthetic data when:

EG(Z)′|X′
aN∼P ′F(P,Q′) > EG(Z)|XN∼PF(P,Q)

(3)
As EG(Z)′|X′

aN∼P ′F(P,Q′) is equal to
EG(Z)′|X′

aN∼P ′F(P ′, Q′) when P ′ = P and, for any
P ′, is an increasing function of EG(Z)′|X′

aN∼P ′F(P ′, Q′)
and is equal to F(P, P ′) as a → ∞, if we assume strong
control of F(P, P ′) to high values, then

F (P, P’) + c EG(Z)′|X′
aN∼P ′F(P ′, Q′) > EG(Z)′|X′

aN∼P ′F(P,Q′)

(4)
where the constant c is determined by F(P, P ′) and will
tend to be small when F(P, P ′) is strongly controlled. Use
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of augmented data can therefore improve the fidelity of
synthetic data when:

F (P, P’) + c EG(Z)′|X′
aN∼P ′F(P ′, Q′) > EG(Z)|XN∼PF(P,Q)

(5)
Note that if this condition is met, in cases where F(P, P ′)
is bounded relatively close to the maximum, as a increases,
then fidelity of the synthetic data will increase. Conversely,
if F(P, P ′) varies with a, an intermediate value of a may
provide the best result. In sum, as the objective when using
generative models to produce synthetic clinical trial data
that has high fidelity (or related) to the original data, and
since the fidelity of the augmented and original data can
be quantified, if strongly controlling observed fidelity leads
to strong control of fidelity on the underlying distributions,
augmented data can improve synthetic data quality.

3. Experiments
3.1. Experimental Setup

The data augmentation framework (Figure 1) involves (i)
generation for a high-quality augmented training dataset
(as compared to the original data) through an augmentation
algorithm, (ii) training a generative model (e.g. CTGAN)
using the augmented training dataset, and (iii) generating
synthetic patient records using the trained generative model.
The improvement through this augmentation framework is
evaluated by synthesizing clinical trial data generated using
only the original clinical trial data as input versus using
augmented training data at different scales. This framework
is evaluated across three clinical trial datasets: (i) Multiple
Myeloma, (ii) Non-small cell lung cancer, and (iii) CAR-T,
while using generative synthetic data algorithms: (i) CTGAN,
(ii) CopulaGAN, and (iii) TVAE.

3.2. Data augmentation framework

The framework of data augmentation involves the following
steps:

1. For each clinical trial dataset XN containing N sam-
ples, the Simulants data augmentation algorithm gen-
erates an augmented dataset X′

aN , where a the “aug-
mentation scaling factor” can be varied such that the
size of the resulting augmented dataset is a ∗N . For
the current set of experiments, augmentation scaling
factor a is set to 2, 3, 6 or 11.

2. For each original clinical trial dataset XN and aug-
mented dataset X′

aN , we train a generative model G
to generate synthetic data S(XN ) and S(X′

aN ) where
all synthetic datasets contain N samples (to allow fair
comparison across datasets).

3. Compare synthetic data performance metrics (fidelity,

Table 1. Description of clinical trial datasets

DATASET NO. PATIENTS NO. FEATURES

MULTIPLE MYELOMA 946 14
NON-SMALL CELL LUNG CANCER 3001 24
CAR-T 5619 19

utility and privacy) on S(XN ) vs. XN and S(X′
aN ) vs.

X′
aN where improved values in metrics for S(X′

aN )
indicate improvement in synthetic data quality due to
augmentation.

For increased reliability of results, multiple synthetic
datasets (n = 3) are generated for each clinical trial dataset,
generative algorithm, and augmentation scaling factor com-
bination. Performance metrics (utility, fidelity and privacy
evaluation) and standard deviation are reported in Section 4.

Figure 1. Data augmentation framework for synthetic data genera-
tion

3.3. Data sources

The impact of data augmentation is evaluated on three
clinical trial datasets that are referred to as: (i) Multiple
Myeloma, (ii) Non-small cell lung cancer, and (iii) CAR-T.
Each clinical trial dataset is an aggregation of multiple trials
for the specific disease indication denoted by the dataset’s
indicated name (except for CAR-T). The CAR-T dataset
consists of patients who participated in clinical trials where
the Chimeric Antigen Receptor T-cell therapy (CAR-T) was
administered. Table 1 lists the number of patients and fea-
tures for each clinical trial dataset.

3.4. Synthetic data generation algorithms

We use the Synthetic Data Gym (SDGym) from the Syn-
thetic Data Vault (SDV) Project (Patki et al.) (Patki et al.,
2016) to evaluate and compare the effect of our data aug-
mentation method on the data generated by three state-of-
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the-art synthesizers, CopulaGAN, CTGAN, and TVAE (Tab-
ular Variational AutoEncoder) (Patki et al., 2016)(Xu et al.,
2019). The SDV benchmark is a library which offers a
set of classical and novel synthetic data generators to use
as comparative baselines as well as a large collection of
evaluation metrics for cross-validation of the synthetic data
against the original data. Generative Adversarial Networks
(GANs) are deep learning based generative models which
consist of two independent sub-models: the generator and
the discriminator (i.e. adversary). As the generator gener-
ates new data, the discriminator distinguishes real data from
the generated data. CTGAN is a GAN-based architecture
that models tabular data distributions. It addresses the chal-
lenges with using GANs on tabular data such as mixed data
types consisting of highly imbalanced categorical data as
well as data having non-gaussian distribution. CopulaGAN
is a variation of CTGAN which utilizes Cumulative Distri-
bution Function (CDF)-based transformation to facilitate
the CTGAN model training. Variational Autoencoder (VAE)
is another neural network based generative model which
consists of an encoder and a decoder where the encoder
maps the data to a latent space and the decoder performs
the opposite to transform the data from the latent space to
the input space. TVAE is an adapted VAE for tabular data
by using the mixed-type data preprocessing and modifying
the loss function. In the current set of experiments, the Syn-
thetic Data Vault Python framework (version 1.0.0) is used
to generate synthetic datasets for clinical trial datasets.

3.5. Augmentation algorithm

The algorithm Simulants is used to create augmentation
datasets by generating synthetic clinical trial data that are in-
terpretably similar to the augmented data in terms of fidelity,
while preserving the privacy of the original data(Beigi et al.,
2022). The “Simulants” algorithm employs the following
steps:

1. Assume the original source data contains n records,
where each record contains m distinct features regard-
ing a subject, with features that can be a mix of cate-
gorical and numerical variables.

2. The original source data is encoded using one-hot-
encoding and the missing values are imputed using
any well-known imputation method.

3. Next the pairwise correlation coefficient is calculated
between all pairs of features to determine the highly
correlated features, where these features will be co-
segregated when generating synthetic data.

4. The data is then embedded into a low-dimensional (e.g.,
2 or 3 dimensions) feature space using PCA (Princi-
pal Component Analysis) (F.R.S., 1901) or other em-
bedding approach (e.g., t-SNE (t-Stochastic Neighbor

Embedding)(der Maaten L & G., 2008), UMAP (Uni-
form Manifold Approximation and Projection) (Le-
land McInnes & Melville)).

5. After embedding the data, the k nearest neighbor al-
gorithm(Cover & Hart, 1967)(Buitinck et al., 2013)
is applied, and for each point one (or more) synthetic
data points are simulated by randomly permuting the
features of its nearby neighbors within a certain ra-
dius/distance.

6. A multiplicative Gaussian error with a truncated distri-
bution to the range of the features is added, where this
error is centered on the feature value of each simulated
record. For discrete features, the values are rounded to
the closest integer values.

3.6. Fidelity evaluation tests

Fidelity metrics provide an interpretable quantity for eval-
uating the degree to which the synthetic data resemble the
original data. The following fidelity metrics are used in this
study: (i) bag of words distance (Beigi et al., 2022), (ii) Col-
umn Shapes (Patki et al., 2016), and (iii) Paired correlation
r2 (Patki et al., 2016).

• Bag of words distance: This metric measures the Eu-
clidean distance between the centroid frequencies in
real vs. synthetic datasets. Centroids are defined by
K-Means clustering (Lloyd, 1982) on the real dataset.
Centroid frequency in a dataset (real or synthetic) is
defined as the frequency of samples that are closest to
each centroid (as defined by the real dataset). Specifi-
cally, the bag of words distance measures the Euclidean
distance between the centroid frequencies as computed
for the real dataset compared to the synthetic data,
where scores close to 0 are ideal.

• Column shapes. This metric measures the mean col-
umn similarity between real vs. synthetic data. Here
the similarity between numerical columns is defined
using the Kolmogrov-Smirinov test (Massey Jr, 1951)
where the similarity is defined as a 1-KS-test statistic.
The similarity for categorical columns is defined as the
sum of the absolute differences in frequencies of values
within the column between synthetic data and real data.
The overall ”Column Shapes” metric is calculated as
the mean similarity across columns for the synthetic
data. Values close to 1 indicate high similarity between
the columns in synthetic compared to real data. This
metric is sourced from Python SDV library (Patki et al.,
2016).

• Paired correlations r2. This metric indicates the coef-
ficient of determination r2 between pairwise correla-
tions across columns between real vs. synthetic data.
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This metric uses Pearson correlation and total varia-
tion distance for numerical and categorical columns
respectively (Freedman et al., 2007). Values close to
1 indicate high similarity in pairwise correlations in
synthetic compared to real data. This metric computes
r2 on paired correlations across features in the dataset
sourced from the Python Synthetic Data Vault library
(Patki et al., 2016).

3.7. Privacy evaluation tests

The following intuitive privacy metrics are used to calculate
the risk presented by the synthetic datasets created using
the augmented training datasets vs. the original training
datasets.

• Singling out. This test assesses the risk of singling
out a record using a unique univariate value for a spe-
cific record. Lower values close to 0 indicate a lower
risk of disclosure using this attack. Python library
anonymeter (Giomi et al., 2023) is used to evaluate
this metric.

• Linkability risk. This test assesses the risk of linking
a record from the real data to the synthetic data using
a set of auxiliary information available such as age,
sex, and race. Lower values close to 0 indicate a lower
risk of disclosure using this attack. Python library
anonymeter (Giomi et al., 2023) is used to evaluate
this metric.

• Mean inference risk. This test assesses the mean in-
ference risk across all columns in the synthetic data
where inference risk for each column is computed as
the attacker’s ability to predict the attribute for an origi-
nal record using the synthetic data. Lower values close
to 0 indicate a lower risk of disclosure using this attack.
Python library anonymeter (Giomi et al., 2023) is
used to evaluate this metric.

• Privacy loss. This metric is calculated as the difference
between the adversarial test accuracy and adversarial
train accuracy (Yale et al., 2019). Here, accuracy is
defined as the attacker’s ability (accuracy) in predicting
if a record belongs to (i.e. is closest to) the real data
compared to synthetic data where ”Adversarial train
accuracy” is computed on training real data (as real
data) and ”Adversarial test accuracy” on test real data.
Here, higher accuracy indicates the attacker is able to
differentiate between synthetic and real data easily. For
privacy loss, values closer to 0 denote low privacy loss
whereas high values close to 1 indicate higher loss of
privacy.

3.8. Utility evaluation tests

The utility metrics for clinical trial datasets focus on per-
formance of survival analysis and computation of survival
probabilities and their differences between the original and
synthetic datasets. Larger differences in survival probabil-
ities indicate poor utility and smaller differences indicate
higher utility resulting in the end-user inferring similar con-
clusions when they use the original data compared to the
synthetic data.

• Log-rank test: The logrank test(Bland & Altman,
2004) is used to test the null hypothesis that there is no
difference between the populations in the probability
of an event (i.e. death) at any time point. The analysis
is based on the times of events (i.e. death). P-value
of the log-rank test indicates the probability that the
test-statistic was computed by chance. In this case,
higher p-values are better and indicate higher similar-
ity between the original and synthetic dataset. Lower
p-values indicate low probability that the differences
between the survival curves were observed by chance,
which is not ideal.

• Survival probabilities r2 : Coefficient of determina-
tion r2 is computed between the survival probabilities
at fixed time intervals in the original dataset compared
to the synthetic data. r2 values ranged from 0 to 1
where high r2 values close to 1 indicated higher utility
compared to lower r2 values. High r2 values also indi-
cate strong alignment between the respective survival
probabilities (original vs. synthetic).

4. Results and Discussion
4.1. Fidelity evaluation results

Fidelity of synthetic data to original data was defined us-
ing the following fidelity metrics: (i) bag of words dis-
tance (Beigi et al., 2022), (ii) Column shapes (Patki et al.,
2016), and (iii) Paired correlation r2 (Patki et al., 2016).
The fidelity metrics are computed on synthetic data gener-
ated using the original training data denoted as “Original”
or augmented training data denoted as “Augmented 2x”,
“Augmented 3x”, “Augmented 6x”, or “Augmented 11x”
where the number indicates the “augmentation scaling fac-
tor” as described in Section 3.2. Tables 2, 3, and 4 show
the mean fidelity metrics across the three synthetic datasets
produced for each clinical trial dataset (Multiple Myeloma,
Non-small cell lung cancer, and CAR-T) while using each
generative synthetic data algorithm (CTGAN, CopulaGAN,
and TVAE). Fidelity metrics for the data produced using the
algorithm Simulants (which is used for augmentation) are
reported for reference in each of the fidelity plots. The re-
sults across fidelity metrics indicate that augmented training
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Table 2. Fidelity evaluation for Multiple Myeloma. Best score
across models per algorithm is in bold. Best overall score is
underlined.

MODEL (INPUT) DISTANCE COLUMN SHAPES CORRELATION r2

CTGAN (ORIGINAL) 0.29 (0.01) 0.83 (0.02) -0.14 (0.07)
CTGAN (AUGMENTED 2X) 0.28 (0.04) 0.83 (0.01) 0.03 (0.10)
CTGAN (AUGMENTED 3X) 0.27 (0.01) 0.86 (0.01) 0.07 (0.04)
CTGAN (AUGMENTED 6X) 0.18 (0.00) 0.89 (0.01) 0.58 (0.05)
CTGAN (AUGMENTED 11X) 0.10 (0.02) 0.88 (0.01) 0.79 (0.00)
COPULAGAN (ORIGINAL) 0.33 (0.03) 0.75 (0.01) -0.03 (0.08)
COPULAGAN (AUGMENTED 2X) 0.30 (0.01) 0.72 (0.03) 0.07 (0.15)
COPULAGAN (AUGMENTED 3X) 0.28 (0.03) 0.79 (0.01) 0.23 (0.16)
COPULAGAN (AUGMENTED 6X) 0.19 (0.02) 0.80 (0.01) 0.65 (0.03)
COPULAGAN (AUGMENTED 11X) 0.10 (0.01) 0.81 (0.01) 0.77 (0.03)
TVAE (ORIGINAL) 0.11 (0.01) 0.84 (0.00) 0.90 (0.04)
TVAE (AUGMENTED 2X) 0.08 (0.00) 0.85 (0.01) 0.92 (0.01)
TVAE (AUGMENTED 3X) 0.08 (0.01) 0.86 (0.00) 0.94 (0.01)
TVAE (AUGMENTED 6X) 0.07 (0.01) 0.84 (0.02) 0.93 (0.02)
TVAE (AUGMENTED 11X) 0.07 (0.02) 0.85 (0.00) 0.89 (0.06)
SIMULANTS (ORIGINAL) 0.01 0.97 0.92

Table 3. Fidelity evaluation for Non-small cell lung cancer. Best
score across models per algorithm is in bold. Best overall score is
underlined.

MODEL (INPUT) DISTANCE COLUMN SHAPES CORRELATION r2

CTGAN (ORIGINAL) 0.27 (0.02) 0.91 (0.01) 0.06 (0.11)
CTGAN (AUGMENTED 2X) 0.23 (0.01) 0.91 (0.02) 0.39 (0.02)
CTGAN (AUGMENTED 3X) 0.23 (0.01) 0.92 (0.01) 0.66 (0.02)
CTGAN (AUGMENTED 6X) 0.17 (0.00) 0.94 (0.01) 0.81 (0.02)
CTGAN (AUGMENTED 11X) 0.09 (0.00) 0.93 (0.00) 0.88 (0.01)
COPULAGAN (ORIGINAL) 0.29 (0.04) 0.87 (0.02) 0.24 (0.11)
COPULAGAN (AUGMENTED 2X) 0.24 (0.00) 0.88 (0.00) 0.44 (0.05)
COPULAGAN (AUGMENTED 3X) 0.22 (0.01) 0.88 (0.01) 0.67 (0.03)
COPULAGAN (AUGMENTED 6X) 0.15 (0.00) 0.93 (0.00) 0.80 (0.02)
COPULAGAN (AUGMENTED 11X) 0.19 (0.01) 0.90 (0.01) 0.88 (0.01)
TVAE (ORIGINAL) 0.17 (0.01) 0.83 (0.00) 0.83 (0.06)
TVAE (AUGMENTED 2X) 0.17 (0.01) 0.89 (0.00) 0.90 (0.00)
TVAE (AUGMENTED 3X) 0.16 (0.01) 0.89 (0.01) 0.95 (0.01)
TVAE (AUGMENTED 6X) 0.10 (0.01) 0.89 (0.01) 0.98 (0.01)
TVAE (AUGMENTED 11X) 0.07 (0.03) 0.88 (0.00) 0.97 (0.01)
SIMULANTS (ORIGINAL) 0.00 0.99 0.98

data improved the fidelity of the synthetic data produced
over those produced by training only on the original clinical
trial dataset.

The overall fidelity of synthetic data depends highly on
the synthesizer algorithm used, where TVAE outperformed
other algorithms (CTGAN, CopulaGAN) across clinical
trial datasets when using only original data as the training
input. When trained with augmented training datasets, how-
ever, the quality of the synthetic data improved across syn-
thetic data algorithms indicating the power of data augmen-
tation for GAN models. This can be observed for CTGAN
where the “Paired Correlation r2” is less than 0.1 for syn-
thetic data generated using the original clinical trial data
as input (mean r2 = −0.14 for Multiple Myeloma; mean
r2 = 0.06 for Non-small lung cancer). In contrast, the
“Paired Correlation r2” increases to around 0.8 for synthetic
data generated using CTGAN with augmented data as input
(mean r2 = 0.79 for Multiple Myeloma; mean r2 = 0.88
for Non-small cell lung cancer). This trend was consistent
across fidelity metrics and clinical trial datasets where the
largest improvements are seen in Multiple Myeloma and

Table 4. Fidelity evaluation for CAR-T. Best score across models
per algorithm is in bold. Best overall score is underlined.

MODEL (INPUT) DISTANCE COLUMN SHAPES CORRELATION r2

CTGAN (ORIGINAL) 0.19 (0.02) 0.86 (0.00) 0.61 (0.02)
CTGAN (AUGMENTED 2X) 0.15 (0.01) 0.87 (0.01) 0.68 (0.04)
CTGAN (AUGMENTED 3X) 0.12 (0.01) 0.89 (0.03) 0.84 (0.00)
CTGAN (AUGMENTED 6X) 0.11 (0.00) 0.88 (0.02) 0.83 (0.04)
CTGAN (AUGMENTED 11X) 0.09 (0.00) 0.88 (0.00) 0.86 (0.02)
COPULAGAN (ORIGINAL) 0.21 (0.02) 0.77 (0.01) 0.65 (0.02)
COPULAGAN (AUGMENTED 2X) 0.15 (0.02) 0.77 (0.01) 0.70 (0.06)
COPULAGAN (AUGMENTED 3X) 0.13 (0.01) 0.84 (0.00) 0.86 (0.02)
COPULAGAN (AUGMENTED 6X) 0.09 (0.00) 0.78 (0.00) 0.82 (0.03)
COPULAGAN (AUGMENTED 11X) 0.09 (0.00) 0.82 (0.00) 0.86 (0.03)
TVAE (ORIGINAL) 0.10 (0.01) 0.85 (0.01) 0.89 (0.03)
TVAE (AUGMENTED 2X) 0.13 (0.01) 0.85 (0.01) 0.87 (0.02)
TVAE (AUGMENTED 3X) 0.13 (0.01) 0.86 (0.01) 0.86 (0.01)
TVAE (AUGMENTED 6X) 0.17 (0.01) 0.85 (0.00) 0.90 (0.02)
TVAE (AUGMENTED 11X) 0.07 (0.01) 0.86 (0.00) 0.89 (0.01)
SIMULANTS (ORIGINAL) 0.01 0.99 1.00

Non-small cell lung cancer and the GAN-based models
compared to TVAE and CAR-T. The modest improvement
in CAR-T may be explained by the initial dataset size of
over 5000 samples, suggesting that the improvement due
to training data augmentation may be of most importance
where initial dataset size is smaller than 5000. Further inves-
tigation is needed to define the upper limits in improvement
relative to scale of the initial dataset available. Across in-
creasing values of augmentation scaling factor from 2 to 11,
increased improvements across most of the fidelity metrics
(Bag of words distance, Paired correlation r2) and clinical
trial datasets are also observed.

4.2. Utility evaluation results

Utility of synthetic clinical trial data is evaluated using the
Kaplan-Meier curves (Altman, 1992)(MK Goel & Kishore,
2010) fitted on the time to death and death flag variables
present in each clinical trial dataset. Survival analysis is
performed on the original dataset and the synthetic datasets
created by each of the synthetic data algorithms trained on
augmented training data vs. original clinical trial data only.

Tables 5, 6, and 7 present the results of the log-rank test for
synthetic data produced using augmented training data com-
pared to original clinical trial data. As shown for most of the
datasets, synthetic data generated using augmented data had
lower log-rank test statistic and p > 0.05 (where statistical
significance α = 0.05). All synthetic data generated using
the original data resulted in higher log-rank test statistics and
p < 0.05 (except for CTGAN and CopulaGAN for Multi-
ple Myeloma, and only CopulaGAN for CAR-T). None of
the synthetic datasets generated for Non-small lung cancer
using the original clinical trial data only resulted in log-
rank test p > 0.05 across the synthetic data algorithms. In
contrast, most synthetic datasets where augmented training
datasets were used result in log-rank test p > 0.05 across
clinical trial datasets and synthetic data algorithms.

For additional evidence, the r2 for survival probabilities

6



Data augmentation framework for synthetic data generation

Table 5. Utility evaluation for the Multiple Myeloma dataset. Best
score across models per algorithm is in bold. Best overall score is
underlined.

MODEL (INPUT) TEST STATISTIC p r2

CTGAN (ORIGINAL) 13.23 (18.52) 0.31 (0.52) 0.92 (0.08)
CTGAN (AUGMENTED 2X) 21.63 (29.02) 0.02 (0.02) 0.89 (0.12)
CTGAN (AUGMENTED 3X) 21.84 (8.85) 0.00 (0.00) 0.88 (0.06)
CTGAN (AUGMENTED 6X) 1.93 (1.72) 0.32 (0.38) 0.96 (0.02)
CTGAN (AUGMENTED 11X) 13.21 (9.45) 0.04 (0.06) 0.95 (0.05)
COPULAGAN (ORIGINAL) 60.45 (89.93) 0.06 (0.11) 0.75 (0.34)
COPULAGAN (AUGMENTED 2X 46.71 (65.68) 0.06 (0.10) 0.76 (0.27)
COPULAGAN (AUGMENTED 3X 70.55 (33.98) 0.00 (0.00) 0.71 (0.13)
COPULAGAN (AUGMENTED 6X 6.76 (10.42) 0.28 (0.27) 0.94 (0.02)
COPULAGAN (AUGMENTED 11X 13.81 (7.39) 0.00 (0.00) 0.94 (0.02)
TVAE (ORIGINAL) 21.89 (11.39) 0.00 (0.00) 0.94 (0.03)
TVAE (AUGMENTED 2X) 7.89 (4.03) 0.01 (0.01) 0.97 (0.01)
TVAE (AUGMENTED 3X) 3.27 (2.39) 0.12 (0.10) 0.99 (0.00)
TVAE (AUGMENTED 6X) 11.99 (6.36) 0.00 (0.00) 0.97 (0.02)
TVAE (AUGMENTED 11X) 8.57 (2.42) 0.01 (0.01) 0.97 (0.01)
SIMULANTS (ORIGINAL) 0.01 0.94 1.00

computed at fixed time intervals was computed for the orig-
inal data and the synthetic data. As shown in Tables 5,
6, and 7, the r2 values for synthetic data generated using
augmented training data was higher than the r2 values for
synthetic data generated using only the original clinical
trial data across synthetic data algorithms and clinical trial
datasets. The largest increase in r2 was observed in CTGAN
where the mean r2 = 0.17 (Table 7) for synthetic data gen-
erated using the original data compared to mean r2 = 0.87
for the synthetic data generated using the augmented data
(Model: ”Augmented 2x”). Though improvements in fi-
delity using augmented data may be modest for CAR-T,
the increase in the utility scores highlights the importance
of using high-quality augmented data. Figure 2 shows an
example of the Kaplan-Meier curves from the experiment re-
sults (Non-small lung cancer; ”Augmented 5x”). As shown,
synthetic datasets (red) generated using the augmented data
produced survival curves with higher overlap with the origi-
nal dataset (blue). In contrast, the curves generated using
the original training data only deviated significantly from
the original trend in the survival curves.

4.3. Privacy evaluation results

Risk of privacy disclosure presented by the synthetic data
was evaluated using (i) Singling out risk(Giomi et al., 2023),
(ii) Linkability risk(Giomi et al., 2023), (iii) Mean inference
risk(Giomi et al., 2023), and (iv) Privacy Loss(Yale et al.,
2019). The risk for each of the privacy metrics is computed
for synthetic data created using the original clinical trial data
compared to augmented clinical trial data as input to the
synthesizer. Across most privacy metrics, the risk presented
by synthetic data from generative models trained on aug-
mented data was higher than that presented by the original
data, though the absolute risk across metrics remained low.

Though the absolute risk presented by these synthetic data

Table 6. Utility evaluation for the Non-small cell lung cancer
dataset. Best score across models per algorithm is in bold. Best
overall score is underlined.

MODEL (INPUT) TEST STATISTIC p r2

CTGAN (ORIGINAL) 97.87 (118.94) 0.00 (0.00) 0.83 (0.14)
CTGAN (AUGMENTED 2X) 47.87 (42.17) 0.05 (0.08) 0.90 (0.06)
CTGAN (AUGMENTED 3X) 21.08 (12.72) 0.00 (0.01) 0.96 (0.01)
CTGAN (AUGMENTED 6X) 8.52 (12.17) 0.30 (0.45) 0.97 (0.02)
CTGAN (AUGMENTED 11X) 13.74 (3.69) 0.00 (0.00) 0.97 (0.01)
COPULAGAN (ORIGINAL) 142.54 (128.43) 0.00 (0.00) 0.73 (0.20)
COPULAGAN (AUGMENTED 2X) 21.18 (16.32) 0.02 (0.03) 0.94 (0.04)
COPULAGAN (AUGMENTED 3X) 1.52 (1.39) 0.40 (0.45) 0.97 (0.01)
COPULAGAN (AUGMENTED 6X) 5.22 (1.45) 0.03 (0.02) 0.98 (0.00)
COPULAGAN (AUGMENTED 11X) 8.73 (7.34) 0.08 (0.13) 0.98 (0.01)
TVAE (ORIGINAL) 222.24 (88.57) 0.00 (0.00) 0.69 (0.11)
TVAE (AUGMENTED 2X) 4.33 (2.26) 0.06 (0.07) 0.99 (0.00)
TVAE (AUGMENTED 3X) 8.04 (10.72) 0.32 (0.52) 0.98 (0.01)
TVAE (AUGMENTED 6X) 6.48 (4.50) 0.07 (0.11) 0.99 (0.00)
TVAE (AUGMENTED 11X) 5.22 (5.73) 0.24 (0.37) 0.98 (0.00)
SIMULANTS (ORIGINAL) 0.02 0.88 1.00

Table 7. Utility evaluation for the CAR-T dataset. Best score
across models per algorithm is in bold. Best overall score is
underlined.

MODEL TEST STATISTIC p r2

CTGAN (ORIGINAL) 18.70 (6.52) 0.00 (0.00) 0.17 (0.40)
CTGAN (AUGMENTED 2X) 5.43 (4.78) 0.20 (0.33) 0.87 (0.07)
CTGAN (AUGMENTED 3X) 35.76 (51.26) 0.09 (0.16) 0.58 (0.51)
CTGAN (AUGMENTED 6X) 70.60 (45.61) 0.00 (0.00) 0.42 (0.35)
CTGAN (AUGMENTED 11X) 45.38 (14.52) 0.00 (0.00) 0.78 (0.16)
COPULAGAN (ORIGINAL) 16.83 (17.61) 0.09 (0.15) 0.47 (0.44)
COPULAGAN (AUGMENTED 2X) 15.62 (13.16) 0.02 (0.03) 0.79 (0.16)
COPULAGAN (AUGMENTED 3X) 6.97 (8.85) 0.13 (0.14) 0.81 (0.06)
COPULAGAN (AUGMENTED 6X) 9.98 (6.35) 0.03 (0.05) 0.91 (0.07)
COPULAGAN (AUGMENTED 11X) 50.83 (23.86) 0.00 (0.00) 0.70 (0.25)
TVAE (ORIGINAL) 44.95 (9.41) 0.00 (0.00) 0.47 (0.07)
TVAE (AUGMENTED 2X) 26.45 (13.73) 0.00 (0.00) 0.62 (0.18)
TVAE (AUGMENTED 3X) 44.53 (13.40) 0.00 (0.00) 0.60 (0.12)
TVAE (AUGMENTED 6X) 17.45 (11.31) 0.00 (0.01) 0.76 (0.02)
TVAE (AUGMENTED 11X) 6.97 (6.92) 0.12 (0.19) 0.70 (0.09)
SIMULANTS (ORIGINAL) 0.66 0.42 0.99

across privacy metrics remains low (less than 0.1), use of
generative algorithms that incorporate differential privacy
(e.g. DP-GAN(Liyang Xie & Zhou, 2018)) can provide
an additional layer of privacy when using the proposed
data augmentation framework. When considering privacy
loss(Yale et al., 2019), TVAE has the largest privacy loss
(less than 2%) indicating that overall the adversarial attack
is not able to distinguish between a train and test dataset
having similar success of attack in each scenario.

5. Conclusion
In this paper, we present a data augmentation framework
that significantly improves the performance of generative
models when generating synthetic clinical trial data. The
overall performance of the framework highly depends on the
synthetic data generation algorithm of choice; hence, genera-
tive models need to be carefully tested. We chose Simulants
as the augmentation method as it can upsample the data to
large amounts while still maintaining very high fidelity so
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Figure 2. Survival probability for Non-small cell lung cancer through synthetic and original clinical trial data. Rows represent results of
the Kaplan-Meier curves (Altman, 1992)(MK Goel & Kishore, 2010) of the patients’ overall survival evaluating on synthetic dataset
generated using (i) original clinical trial data and (ii) augmented clinical trial data (6x). Each column represents the synthetic data
generation algorithm used to generate the synthetic data TVAE, CopulaGAN, and CTGAN. Results for Simulants, the data augmentation
algorithm, are provided for reference.

Table 8. Privacy evaluation for the Multiple Myeloma dataset. Best
score across models per algorithm is in bold. Best overall score is
underlined.

MODEL SINGLING OUT LINKABILITY RISK INFERENCE RISK PRIVACY LOSS

CTGAN (ORIGINAL) 0.000 0.000 0.055 0.003
CTGAN (AUGMENTED 2X) 0.046 0.000 0.028 0.015
CTGAN (AUGMENTED 3X) 0.056 0.143 0.011 -0.003
CTGAN (AUGMENTED 6X) 0.033 0.167 0.023 0.005
CTGAN (AUGMENTED 11X) 0.022 0.000 0.054 0.020
COPULAGAN (ORIGINAL) 0.024 0.056 0.033 0.000
COPULAGAN (AUGMENTED 2X) 0.000 0.000 0.056 0.010
COPULAGAN (AUGMENTED 3X) 0.055 0.000 0.022 -0.015
COPULAGAN (AUGMENTED 6X) 0.125 0.000 0.068 -0.015
COPULAGAN (AUGMENTED 11X) 0.000 0.040 0.029 0.001
TVAE (ORIGINAL) 0.022 0.006 0.033 0.015
TVAE (AUGMENTED 2X) 0.053 0.000 0.066 0.026
TVAE (AUGMENTED 3X) 0.000 0.000 0.010 0.011
TVAE (AUGMENTED 6X) 0.000 0.000 0.032 0.015
TVAE (AUGMENTED 11X) 0.086 0.000 0.038 0.043

the generated data can be regarded as pseudo-real training
data for the generative models. On the other hand, if the aug-
mentation method does not produce high quality data, the
generative model will learn and produce low quality data
with distributions that are very different from the source
data. Future work will include measuring the relationship
and the bounds on performance improvement in relation
to the augmentation scaling factor, initial data size (vary-
ing from extremely small tens to 105) and other augmenta-
tion techniques while also including the privacy-preserving
generative algorithms (including PATE-GAN(James Jordon
& van der Schaar, 2019), DP-GAN(Liyang Xie & Zhou,
2018)), with a focus on identifying the limitations of this
augmentation framework through empirical exploration. For
continued development and innovation in clinical trial re-

Table 9. Privacy evaluation for the Non-small cell lung cancer data.
Best score across models per algorithm is in bold. Best overall
score is underlined.

MODEL SINGLING OUT LINKABILITY RISK INFERENCE RISK PRIVACY LOSS

CTGAN (ORIGINAL) 0.038 0.120 0.047 -0.003
CTGAN (AUGMENTED 2X) 0.055 0.000 0.093 0.004
CTGAN (AUGMENTED 3X) 0.000 0.000 0.104 0.004
CTGAN (AUGMENTED 6X) 0.083 0.000 0.035 -0.001
CTGAN (AUGMENTED 11X) 0.000 0.148 0.078 0.008
COPULAGAN (ORIGINAL) 0.063 0.000 0.041 0.004
COPULAGAN (AUGMENTED 2X) 0.074 0.000 0.056 -0.005
COPULAGAN (AUGMENTED 3X) 0.080 0.169 0.058 -0.001
COPULAGAN (AUGMENTED 6X) 0.129 0.029 0.056 0.005
COPULAGAN (AUGMENTED 11X) 0.038 0.000 0.054 0.009
TVAE (ORIGINAL) 0.061 0.063 0.092 0.009
TVAE (AUGMENTED 2X) 0.000 0.056 0.072 0.019
TVAE (AUGMENTED 3X) 0.000 0.018 0.056 0.013
TVAE (AUGMENTED 6X) 0.000 0.141 0.071 0.006
TVAE (AUGMENTED 11X) 0.000 0.095 0.072 0.005

search, collaboration, while preserving privacy of patients,
is essential. This framework provides an efficient way to
generate high quality synthetic data at scale while simultane-
ously preserving the fidelity and privacy interests, increasing
the democratization of trial data to support further research
into more efficient, higher quality clinical trials.
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