

COMPREHENSIVE ANTIBODY SUITE

Antibodies, renowned for their specificity and potency, are remarkably effective biological therapies for treating complex diseases, including cancer, infectious diseases, and chronic inflammatory, cardiovascular, and immune disorders. Similar to the challenges faced in designing small molecule drugs, optimizing therapeutic antibodies requires careful consideration of efficacy, safety, and developability. **BIOVIA Discovery Studio Simulation** on the **3D**EXPERIENCE® platform offers a wealth of advanced tools for modeling and simulating antibody structures and studying how these structures interact with their targets. This comprehensive antibody suite helps researchers confidently optimize the efficacy and pharmaceutical developability of antibodies as biotherapeutic agents, by delivering the essential science in an easy-to-use environment.

STRUCTURE PREDICTION

Annotation and Alignment

- Automatically identify the variable and constant domains and complementarity determining region (CDR) loops of an antibody sequence or structure using HMM (Hidden Markov Model)
- For variable domains, report the CDR loops and number the residues based on several commonly adopted definitions, including Chothia, Kabat, IMGT, and Honegger
- Quickly and accurately align model sequences based on the annotation scheme

Figure 1: Annotated aligned sequences colored by light and heavy chain domains and CDR regions

Building Structural Models

BIOVIA Discovery Studio Simulation includes MODELER¹, the industry standard for homology modeling, and OpenFold²/ AlphaFold³ AI/ML algorithms to build 3D structures of antibodies and antigens.

- Generate high-quality 3D full-length (bispecific) antibody, Fab, Fv, and single chain variable fragment (scFv) structures from a set of light and heavy chain sequences
- Rapidly generate antibody models of multiple input sequences with refined CDR loops using an automated modeling cascade workflow
 - Automatically search a curated PDB antibody database to identify optimal templates for each chain, domain, and loop
 - Refine template selection, by filtering for particular species, resolution, with or without CDR residues
- Alternatively, identify templates and build the framework models individually
 - Choose to have greater control over individual cascade steps
 - Build from a chimeric template based on different light and heavy chain templates

- Generate high-quality 3D models of antigen target proteins from their sequences with prediction from the novel OpenFold/AlphaFold Al/ML algorithms or the MODELER homology modeling algorithm
- Alternatively, build an antibody-antigen complex together with the AlphaFold multimer algorithm

Model Refinement

- Search a database of known antibodies to find the best templates for each loop region and build the loops based on the templates
- Determine and refine individual loop conformations
 - Graft a loop conformation from a template structure onto the target antibody model
 - Perform *ab initio* loop refinement by systematically sampling and refining loop conformations using the CHARMm-based LOOPER⁴ algorithm
- Optimize amino acid side-chain positions using the CHARMm-based ChiRotor⁵ algorithm
- Perform implicit or explicit solvent-based GPU MD simulations using CHARMm⁶ to model antibody motion, conformational change and interactions
- Perform GPU-enabled explicit solvent MD simulations with NAMD^7
- Perform Gaussian accelerated Molecular Dynamics⁸ simulations to quickly explore conformational space

AFFINITY AND SELECTIVITY

BIOVIA Discovery Studio Simulation includes a suite of tools to optimize antibody-antigen binding.

Antigen-Antibody Docking

- Predict the structures of antibody-antigen complexes quickly and accurately with ZDOCK⁹
 - Cluster poses based on their spatial proximity and filter poses based on known interface (CDR) residues
- Refine docked poses with RDOCK to optimize binding interactions
- Analyze epitope and paratope binding interfaces and generate reports for different types of interactions

Figure 2: Analyze antibody-antigen docked poses.

Prediction and Optimization of Binding Affinity

- Perform combinatorial amino acid mutagenesis to evaluate the effects of mutations on antibody stability and binding affinity, considering pH dependency and thermal effects^{10,11}
 - Mutations can be to a single residue such as in alanine scanning or multi-site, complex combinations such as for *in silico* affinity maturation
 - Provides clear analysis of the predicted effect of the mutation and how it is composed
- Identify mutations that change the pH-dependent binding profile of the antibodies to the receptors to optimize effector function and serum half-life

DEVELOPMENT AND FORMULATION

BIOVIA Discovery Studio Simulation allows users to apply validated algorithms, including those licensed from the Massachusetts Institute of Technology and developed at Prof. Trout's laboratory, to help assess the early-stage developability of antibody candidates, increasing chances of success during late-stage development.

Candidates can be ranked and evaluated to identify modifications to improve formulation, long-term stability, and developability.

- Predict aggregation propensity with the Spatial Aggregation Propensity¹² (SAP) score
 - Identify the size and location of regions on antibodies prone to aggregation
- Predict the Developability Index¹³ (DI) for rapid, early-stage assessment of suitability for development, incorporating aggregation propensity score and total charge properties
- Calculate relative viscosity scores using the surface charge method¹⁴ (SCM), considering the exposed negative charge
 - Visualize charge surface maps to identify regions correlating with higher viscosity

- Calculate additional biophysical properties including, solubility, isoelectric point, pH of maximum stability, net charge, dipole moment
- Identify post-translational modification sites (e.g. deamidation, oxidation) using default or user-specified definitions

Excipient Formulation

- Predict preferential interaction of common excipients (Sorbitol, Sucrose, Trehalose, Proline, Arginine-HCl, and NaCl) with machine learning (ML) models¹⁵ to improve antibody formulation
 - Visualize excipient interactions at sites with high aggregation or surface charge

Figure 4: Surfaces colored by the excipient predictions, showing areas of inclusion and exclusion.

HUMANIZATION

- Reduce immunogenicity by predicting humanizing mutations without compromising antibody stability or efficacy
 - Utilize an ML model¹⁶ trained on human and murine antibody sequences
 - Explore suggestions based on frequency statistics compiled by extracting human antibody variable domain sequences from the Observed Antibody Space database and frequency statistics from the NCBI
 - Analyze interactive residue reports of predicted mutations
 - Generate humanized structures automatically for further analysis

LEARN MORE

Legend for Table													Legend for Tooltip								
Display Style Description												(Display Style				Description				
Red Background	Heavy	y chain CDR region									_	Red Logo				Acidic Residue					
Bright Green Backgi	ry chain framework region										Blue Logo				Basic Residue						
Mid Blue Backgroun	chain concregion chain framework region										Purple Logo				Residue						
Dark Gray Backgrou	at scheme residue number										Black Logo				Hydrophobic Residue						
Light Gray Backgrou	IMGT (T scheme residue number										Green Logo				Neutral Residue					
Blue Background	Vernie	nier zone residue										Orange Background				Heavy CDR residue					
Yellow Background Inte Green Background Ver Red residue number Qui				inface residue										Bright Green Background				Heavy framework residue			
				Auery interface residue not conserved type											Magenta Background				Light CDR residue		
Orange Residue Bar	ckground	d	Freq											Mid Dhin Do	kgrou	nd	Lig	ht framev	vork resi	idue	
Light Green Residue	Backgr	bnuo	Quer						٦Г	0		Do	main								
Bold Dark Green Re	sidue La	ibel	Quer	Quer	N 249	6	Freq	luency		Germ	line	c	DR2-im	t.							
	aceis		Nenn					-				c	OR2-kat	at							
													DR2-ch	othia							
	1	2	3					_					hama	Desition	15	16	17	18	19	20	
	1	2	3					J				30	IGT	62	16	17	18	19	20	21	
luery	E	v	٩				C			C		K	abat	54	G	A	S	L	к		
Bermline	Q	v	٩					>	11.		>	c	hothia	54	G	A	S	V	к	V	
IL_Prediction_1	۵	v	Q	IM	9T 62	-	IMC	ST 62	11.	IMGT	62	A	Но	65	G	A	S	L	к	V	
IL_Prediction_2	Q	v	q								-	In	dex	55	G	A	s	L	к	v	
IL_Prediction_3	۵	v	Q	1.		- 1- *	224705	10.04		<i>p</i> -					G	Р	s	L	к	v	
luman Ab Statistics			Q=	se	quencie	es at j	cc4r05 IC	62	0	Hot	spot Ty	he				A=70			K=83		
	Q=98	V=90	H-	Residue	Percer	ntage	Present ir		Germi	are any m	ncn				5=97	S=26	S=97	V=94	R=8	V=9	
			FR1-				Sequence	9									FR2-im	gt			
	21	22	2	S	28		IGHV1_2	.human							35	36	37	38	39	40	
	22	23	2	N	24		ML_Pred ML_Pred	iction_1 iction_2							40	41	42	43	44	45	
luery	S	С					ML_Pred	iction_3							н	W	V	K	Q	R	
Sermline	S	С	×	F	15		405								н	W	۷	R	Q	A	
IL_Prediction_1	S	С		L	7										н	w	v	R	٩	A	
IL_Prediction_2	s	с		т	7										н	w	v	R	۵	A	
IL_Prediction_3	s	с	1	D	6										н	w	v	R	٩	A	
luman Ab Statistics				G	5										=34						
	S=97	C=100	K=			Qu	erv and I	ML Pred	iction c	comparin	son				=32	W=98	V=91	R=98	Q=96	A=9	
				residue Sequence					Percentage												
	41	42	43	N N		Query ML_Prediction_1			24 24				54 62		55	50	57	58	-imgt 59		
	46	47	48												63	64	65	66	67		
luery	Р	Е	۵	G	L	E	W	1.1	G	R	1	Y	P	т	N	G	Y	т	R	Y	
Bermline	Р	G	Q	G	L	Е	w	м	G	w	1	N	Р	N	s	G	G	т	N	Y	
IL_Prediction_1	Р	Е	Q	G	L	Е	w	1	G	R	1	Y	Р	т	N	G	Y	т	R	Y	
								Multipl	le mutat	tion mod	els										
ation												Mu	lation erov/kcal/mr	D Effe	ct		Model				
AL3>GUNULYS9>SERUPHE10>SERUMET11>VALUTHR13>ALAULYS24>ARG1 HIS42>I VS1 ·SER4									135AI A	-17.210			STABILIZING			Best Single Mutations					
RG54>LEU:L:ASP60	SER L	THR63>	SER L	SN65>S	R,LAR	G66>0	SLY, L: VAL	78>LEU	L LEU83	>PHE L	VAL85>1	HR			0		-		and male		
CT100>GEN(H:GEU1 (S38>ARG(H:GEU42	>GLN;H >GLY;H	ASP60>	ALA;H:P	RU9>AL/ LYS66>AI	RG;H:AL	11>VAI .A67>\	AL;H:SEP	R75>LEU	H:ASN7	≈val;h:ti 76>thr;h	1K23>E) I:GEN81	ASP									
AL82>LEU;H:THR83	ARG,H	GLU85	ASP;H	ALA107>	THR;H:S	SER10	B>LEU;H:	VAL109>	LEU;												
AL3>GLN;L:HIS8>PR ER43>ALA;L:ASP60>	SER:L1	is>SER; THR63>	L'PHÉ1 SER:L'A	u>SER(L) SN65>SI	MET11> R;L:AR	LEU/L G66>G	THR13>A	ULA L SEI 80>PRO	H20>TH	IR:L:HIS4 3>ILE:L:V	2>LYS AL85>TI	R	1.4	000	DE	S (ABILI2	UNG	Germline	Mutatio	ns	
U104>VAL HIGLU1	GLN H	GLN5>V	ALH P	R09>ALA	HLEU1	1>VAL	HVAL12	>LYS:H:L	EU18>V	AL:HLE	J20>VAI	FT									
ER75>ILE H:ASN76	SER;HI	LEU80>	MET(H)	GLN81>G	LU;H:VA	L82>L	EU;H:TH	183>ARG	HIGLU	85>ASP,	HALA10	T>THR									
ER108>LEU;	04.02	0.000		0.000.1	UET IV-	I EU A	TUD (2: 1	1.41-071	D20-T**		NIVE			10000	ALC:			Emourant	Dealet		
4L3>GLN,L:HIS8>PR ER43>ALA;L:ASP60>	SER L1	is>SER THR63>	CPHE1	U>SER L SN65>SI	MET11> R;L:AR	CEUL G66>0	LIMR13>A	NAL SEI 80>PRO	H20>1'H	IR L'HIS4 3>PHE L'	Z>LYS VAL85>1	HR	0.3	10000	NE	UTRAL		rrequent	Residue	e Mula	
U104>VAL H GLU1	GLN(H)	GLN5>V	ALH P	R09>ALA	HLEU1	1>VAL	HVAL12	>LYS HL	EU18>V	AL:HLE	J20>VAI	FT									
FR75>THR H ASN76	SER H	LEU80	MET/H	GLN81>	SLU;H:V	AL82>	LEU H TH	R83>AR	G;H:ALA	A107>TH	R.H.SER	108>LI	EU								
are a manufactor and the	ALA;L:LY VAL;H:V	'S24>AF AL12>L)	IG;L'VA 'S;H:LE	L78>LEU U20>VAL	L'LEU8 H'LYS3	3>PHE 8>ARG	L GLY10 H ARG4	0>GLN/L 0>ALA(H	LEU104 LYS66>	>VAL;H:(ARG;H:A	GLU1>G LA67>V	.N AL	-4	9200	ST	ABILIZIN	G	ML Pred	iction 1		
AL3>GLN L THR13> LN5>VAL H LEU11> LN81>ASP;						IN EU	1-45060-	SERIN	AL 78>L F	FINITED	83>PHE		-7	0100	ST	ARII 17IN	3	ML Pred	iction 2		
AL3>GLN (L.THR13>) LN5>VAL H LEU11> LN61>ASP; AL3>GLN (L:LYS9>SE LY100>GLN (L:LEU10 RG40>ALA H ASPAT	RLTH H>VAL	R13>AL/ H:GLU1> LYS66>	GLN H	24>ARG I GLN5>V ALA67>V	ARGS4	U11>V/ R75>I	AL H VAL	2>LYS:H	LEU20	>VAL;HL	YS38>A	RG				Concentration of the second					
AL3>GLN,L'THR13>/ LN5>VAL;H:LEU11>/ LN61>ASP; 4L3>GLN,L'LYS9>SE J/100>GLN,L'LEU10 RG40>ALA;H:ASP60 L3>GLN;L:LYS9>SF	RL:THF I4>VAL) >ALA;H RL:THF	R13>AL/ H:GLU1> LYS66> R13>AL/	GLNH ARGH	24>ARG(I GLN5>V/ ALA67>V 24>ARG(I	ARG64 AL HILEI AL HISE SER43	U11>V R75>L	EU H GLI EU H GLI	12>LYS:H N81>ASP	ELEU20	>VAL;H:L	YS38>A	RG	67	1600	DF	STABIL 17	ING	ML Pred	iction 3		

Figure 5: Humanization report and table of predicted ML models

REFERENCES

- Sali, A.; Potterton, L.; Yuan, F. et al. Evaluation of comparative protein modeling by MODELLER. *Proteins*. 1995, 23, 318-326.
- Ahdritz, G.; Bouatta, N.; Floristean, C. et al. OpenFold: retraining AlphaFold2 yields new insights into its learning mechanisms and capacity for generalization. *Nat. Methods* 2024 DOI: 10.1038/s41592-024-02272-z
- Jumper, J.; Evans, R.; Pritzel, A. et al. Highly accurate protein structure prediction with AlphaFold. *Nature*. 2021, 596, 583–589.
- 4. Spassov, V.Z.; Flook, P.K.; Yan, L. LOOPER: a molecular mechanics-based algorithm for protein loop prediction. *Prot. Eng., Design & Selection.* 2008, 21, 91-100.
- Spassov, V.Z.; Yan, L.; Flook, P.K. The dominant role of side-chain backbone interactions in structural realization of amino acid code. ChiRotor: A side-chain prediction algorithm based on side-chain backbone interactions. *Prot. Sci.* 2007, 16, 494-506.
- Brooks, B.R.; Bruccoleri, R.E.; Olafson, B.D. et al. CHARMM: A program for macromolecular energy minimization and dynamics calculations. *J. Comp. Chem.* 1983, 4, 187-217.
- Phillips, J.C.; Braun, R.; Wang, W. et al. Scalable molecular dynamics with NAMD. J. Mol. Biol. 2005, 26, 1781-1802.

- Miao, Y.; Feher, V.A.; McCammon, J.A. Gaussian Accelerated Molecular Dynamics: Unconstrained Enhanced Sampling and Free Energy Calculation. J. Chem. Theory Comput. 2015, 11, 3584–3595.
- 9. Chen, R.; Li, L.; Weng, Z. ZDOCK: an initial-stage proteindocking algorithm. Proteins 2003, 52, 80-87.
- Spassov, V.Z.; Yan, L.; pH-selective mutagenesis of protein-protein interfaces: in silico design of therapeutic antibodies with prolonged half-life. Proteins 2013, 81, 704-14.
- Spassov, V.Z.; Yan, L.; A pH-dependent computational approach to the effect of mutations on protein stability. J. Comput. Chem. 2016, 37, 2573-87.
- Chennamsetty, N.; Voynov, V.; Kayser, V. et al. Design of therapeutic proteins with enhanced stability. Proc. Natl. Acad. Sci. USA 2009, 106, 11937-11942.

- Lauer, T.M.; Agrawal, N.J.; Chennamsetty, N. et al. Developability Index: A Rapid in Silico tool for the Screening of Antibody Aggregation Propensity. J. Pharm. Sci. 2012, 101, 102-115.
- 14. Agrawal, N.J.; Helk, B.; Kumar, S. et al. Computational tool for the early screening of monoclonal antibodies for their viscosities. mAbs.2016, 8, 43-48.
- Cloutier, T.K.; Sudrik, C.; Mody, N. et al. Machine Learning Models of Antibody-Excipient Preferential Interactions for Use in Computational Formulation Design. Mol. Pharmaceutics. 2020, 17, 3589-3599
- Marks, C.; Hummer, A.M.; Chin, M. et al. Humanization of antibodies using a machine learning approach on large-scale repertoire data. Bioinformatics 2021, 37, 4041–4047.

Our **3D**EXPERIENCE[®] platform powers our brand applications, serving 12 industries, and provides a rich portfolio of industry solution experiences.

Dassault Systèmes, the **3DEXPERIENCE** Company, is a catalyst for human progress. We provide business and people with collaborative virtual environments to imagine sustainable innovations. By creating virtual twin experiences of the real world with our **3DEXPERIENCE** platform and applications, our customers can redefine the creation, production and life-cycle-management processes of their offer and thus have a meaningful impact to make the world more sustainable. The beauty of the Experience Economy is that it is a human-centered economy for the benefit of all –consumers, patients and citizens.

Dassault Systèmes brings value to more than 300,000 customers of all sizes, in all industries, in more than 150 countries. For more information, visit **www.3ds.com**.

CENTRICPLM **3DEXCITE** Social & Collaborative Apps ŝ Information Intelligence LIDWORK 50 Modeling Apps Zs CATIA **3D** Zs GEOVIA - ADDS Simulation Apps ß SIMULIA 3 DVIF

Europe/Middle East/Africa Dassault Systèmes 10, rue Marcel Dassault CS 40501 78946 Vélizy-Villacoublay Cedex France

Asia-Pacific Dassault Systèmes K.K. ThinkPark Tower 2-1-1 Osaki, Shinagawa-ku, Tokyo 141-6020

Japan

Americas Dassault Systèmes 175 Wyman Street ku, Waltham, Massachusetts 02451-1223 USA