
BIOVIA DISCOVERY STUDIO SIMULATION
ANTIBODY MODELING  
Datasheet

COMPREHENSIVE ANTIBODY SUITE
Antibodies, renowned for their specificity and potency, are remarkably effective biological therapies for 
treating complex diseases, including cancer, infectious diseases, and chronic inflammatory, cardiovascular, and 
immune disorders. Similar to the challenges faced in designing small molecule drugs, optimizing therapeutic 
antibodies requires careful consideration of efficacy, safety, and developability. BIOVIA Discovery Studio 
Simulation on the 3DEXPERIENCE® platform offers a wealth of advanced tools for modeling and simulating 
antibody structures and studying how these structures interact with their targets. This comprehensive  
antibody suite helps researchers confidently optimize the efficacy and pharmaceutical developability of 
antibodies as biotherapeutic agents, by delivering the essential science in an easy-to-use environment.



STRUCTURE PREDICTION

Annotation and Alignment
• Automatically identify the variable and constant domains 

and complementarity determining region (CDR) loops of an 
antibody sequence or structure using HMM 
(Hidden Markov Model)

•  For variable domains, report the CDR loops and number the 
residues based on several commonly adopted definitions, 
including Chothia, Kabat, IMGT, and Honegger

• Quickly and accurately align model sequences based on the 
annotation scheme

Building Structural Models
BIOVIA Discovery Studio Simulation includes MODELER1, the 
industry standard for homology modeling, and OpenFold2/
AlphaFold3 AI/ML algorithms to build 3D structures of 
antibodies and antigens.

• Generate high-quality 3D full-length (bispecific) antibody, 
Fab, Fv, and single chain variable fragment (scFv) structures 
from a set of light and heavy chain sequences

• Rapidly generate antibody models of multiple input 
sequences with refined CDR loops using an automated 
modeling cascade workflow

 - Automatically search a curated PDB antibody database to 
identify optimal templates for each chain, domain, and loop

 - Refine template selection, by filtering for particular species, 
resolution, with or without CDR residues

• Alternatively, identify templates and build the framework 
models individually 

 - Choose to have greater control over individual cascade steps 

 - Build from a chimeric template based on different light and 
heavy chain templates

• Generate high-quality 3D models of antigen target proteins 
from their sequences with prediction from the novel 
OpenFold/AlphaFold AI/ML algorithms or the MODELER 
homology modeling algorithm

• Alternatively, build an antibody-antigen complex together 
with the AlphaFold multimer algorithm

Model Refinement
• Search a database of known antibodies to find the best 

templates for each loop region and build the loops based on 
the templates

• Determine and refine individual loop conformations

 - Graft a loop conformation from a template structure onto the 
target antibody model

 - Perform ab initio loop refinement by systematically sampling 
and refining loop conformations using the CHARMm-based 
LOOPER4 algorithm

• Optimize amino acid side-chain positions using the 
CHARMm-based ChiRotor5 algorithm

• Perform implicit or explicit solvent-based GPU MD 
simulations using CHARMm6 to model antibody motion, 
conformational change and interactions

• Perform GPU-enabled explicit solvent MD simulations with 
NAMD7

• Perform Gaussian accelerated Molecular Dynamics8 
simulations to quickly explore conformational space

AFFINITY AND SELECTIVITY
BIOVIA Discovery Studio Simulation includes a suite of tools to 
optimize antibody-antigen binding.

Antigen-Antibody Docking
• Predict the structures of antibody-antigen complexes 

quickly and accurately with ZDOCK9

 - Cluster poses based on their spatial proximity and filter poses 
based on known interface (CDR) residues

• Refine docked poses with RDOCK to optimize binding 
interactions 

• Analyze epitope and paratope binding interfaces and 
generate reports for different types of interactions

Figure 1:  Annotated aligned sequences colored by 
light and heavy chain domains and CDR regions



Prediction and Optimization of Binding Affinity
• Perform combinatorial amino acid mutagenesis to evaluate 

the effects of mutations on antibody stability and binding 
affinity, considering pH dependency and thermal effects10,11

 - Mutations can be to a single residue such as in alanine 
scanning or multi-site, complex combinations such as for in 
silico affinity maturation 

 - Provides clear analysis of the predicted effect of the mutation 
and how it is composed

• Identify mutations that change the pH-dependent binding 
profile of the antibodies to the receptors to optimize 
effector function and serum half-life

DEVELOPMENT AND FORMULATION
BIOVIA Discovery Studio Simulation allows users to apply 
validated algorithms, including those licensed from the 
Massachusetts Institute of Technology and developed at Prof. 
Trout’s laboratory, to help assess the early-stage developability 
of antibody candidates, increasing chances of success during 
late-stage development.

Candidates can be ranked and evaluated to identify modifications 
to improve formulation, long-term stability, and developability.

• Predict aggregation propensity with the Spatial Aggregation 
Propensity12 (SAP) score

 - Identify the size and location of regions on antibodies prone 
to aggregation

• Predict the Developability Index13 (DI) for rapid, early-stage 
assessment of suitability for development, incorporating 
aggregation propensity score and total charge properties

• Calculate relative viscosity scores using the surface charge 
method14 (SCM), considering the exposed negative charge

 - Visualize charge surface maps to identify regions correlating 
with higher viscosity

Figure 4:  Surfaces colored by the excipient 
predictions, showing areas of inclusion and exclusion.

• Calculate additional biophysical properties including, 
solubility, isoelectric point, pH of maximum stability, net 
charge, dipole moment

• Identify post-translational modification sites (e.g. 
deamidation, oxidation) using default or user-specified definitions

Figure 2:  Analyze antibody-antigen docked poses.

Figure 3:  Surfaces showing the aggregation scores 
and the details of a selected aggregation site

Excipient Formulation
• Predict preferential interaction of common excipients 

(Sorbitol, Sucrose, Trehalose, Proline, Arginine·HCl, and 
NaCl) with machine learning (ML) models15 to improve 
antibody formulation

 - Visualize excipient interactions at sites with high aggregation 
or surface charge



LEARN MORE

Figure 5: Humanization report and table of 
predicted ML models

HUMANIZATION
• Reduce immunogenicity by predicting humanizing 

mutations without compromising antibody stability or 
efficacy

 - Utilize an ML model16 trained on human and murine antibody 
sequences

 - Explore suggestions based on frequency statistics compiled 
by extracting human antibody variable domain sequences 
from the Observed Antibody Space database and frequency 
statistics from the NCBI

 - Analyze interactive residue reports of predicted mutations

 - Generate humanized structures automatically  
for further analysis
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Europe/Middle East/Africa
Dassault Systèmes
10, rue Marcel Dassault
CS 40501
78946 Vélizy-Villacoublay Cedex
France

Americas
Dassault Systèmes
175 Wyman Street
Waltham, Massachusetts
02451-1223
USA

Asia-Pacific
Dassault Systèmes K.K.
ThinkPark Tower
2-1-1 Osaki, Shinagawa-ku,
Tokyo 141-6020
Japan

Our 3DEXPERIENCE® platform powers our brand 
applications, serving 12 industries, and provides a rich 
portfolio of industry solution experiences.

Dassault Systèmes, the 3DEXPERIENCE Company, is a catalyst for human progress. 
We provide business and people with collaborative virtual environments to imagine 
sustainable innovations. By creating virtual twin experiences of the real world with 
our 3DEXPERIENCE platform and applications, our customers can redefine the 
creation, production and life-cycle-management processes of their offer and thus 
have a meaningful impact to make the world more sustainable. The beauty of the 
Experience Economy is that it is a human-centered economy for the benefit of all 
–consumers, patients and citizens.

Dassault Systèmes brings value to more than 300,000 customers of all sizes, in all 
industries, in more than 150 countries. For more information, visit www.3ds.com.

DS-10053-0624


