Webcast: De-Risk Clinical Trials using Machine Learning

On-Demand Webinar

De-Risk Clinical Trials using Machine Learning

Although traditional data quality processes catch many problems, subtle-but-critical issues can escape detection and surprise study teams late in the process or during agency review. Real-time insights from advanced analytics de-risk clinical trials and accelerate time to market by increasing the likelihood of regulatory approval. In this webcast, you’ll uncover:

  • How one pharma company beat their competitor to market by avoiding an extra FDA data review cycle
  • Five key data quality issues that can derail drug approvals
  • The brains and technology behind Medidata Edge Trial Assurance

Download this webcast to learn how to de-risk your trials with machine learning and avoid data inconsistencies or submission errors that cause agency requests for further analysis or worse — non-approval.

Speaker Details:

Michael Elashoff
VP, Data Science at Medidata Solutions & Former FDA Statistical Reviewer

Michael Elashoff is VP of Data Science at Medidata.  Prior to Medidata, he co-founded a company, Patient Profiles, that developed machine learning software for clinical trial analysis.